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For the LW approximation, usually utilized in cor- 
rection of Bragg intensities, it must be expected that 
its results will be worse than those of LWD. The LW 
approximation tends to increase the frequency mode 
values with respect to the real ones when we come 
out of the long-wave limit and this effect will be more 
important when calculating the background contribu- 
tion, where the LW approximation is less valid, and 
therefore the tendency will be an overestimation of 
the net intensity calculated for the scanned volume 
with respect to LWD values, similar to the first-order 
case (Kroon & Vos, 1979). 

We thank the Computing Centre of the University 
of Seville for facilities given to run these rather 
lengthy calculations and the Spanish Government, 
which has supported in part this work through the 
Comisi6n Asesora de Investigaci6n Cientffica y 
Trcnica. 
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Abstract 

An Einstein model for thermal diffuse scattering is 
extended to a fully dynamical n-beam Bloch-wave 
treatment, where explicit account is taken of the scat- 
tering site symmetry from individual atoms. Dynami- 
cal effects in this model are related to orientation- 
dependent fluctuations in current density on localized 
scattering centres within the crystal, yielding excess 
or deficit Kikuchi bands. Calculated diffuse scatter- 
ing distributions are compared with experimental 
observations from rutile (TiO2). The predicted diffuse 
distribution for scattering from oxygen sites correlates 
reasonably well with experiment, implying a relatively 
weak contribution for (localized) thermal diffuse scat- 
tering of fast electrons from titanium sites. 

1. Introduction 

The Einstein model for thermal diffuse scattering 
(TDS) lends itself to interpretation in terms of local- 
ized scattering centres within a unit cell. It has been 
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shown that, for ionization events, a Bloch-wave for- 
mulation in describing the passage of a fast electron 
through a crystal can clearly predict the formation of 
excess or deficient bands in the inelastic beam, 
depending on (1) diffraction conditions for the elastic 
and inelastic beams, (2) scattering kinematics and (3) 
site of interaction within the crystal (Maslen & 
Rossouw, 1984; Rossouw & Maslen, 1984). In this 
paper we extend the Einstein model for TDS, 
developed by Hall & Hirsch (1965), to evaluate the 
scattering kinematics term in a dynamical n-beam 
Bloch-wave formulation. Computer simulations 
based on this theory are compared with the diffuse 
scattering observed from TiO, viewed down the c axis. 

2. Theory 

Hall & Hirsch (1965) derived a formula for the TDS 
intensity as a function of momentum transfer hq to 
the crystal, using an Einstein model for uncorrelated 
thermal displacements of crystal atoms (here q = k -  
k', where k and k' are the wavevectors of the fast 
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electron before and after inelastic scattering). We 
rewrite the equations in terms of localized scattering 
sources, extending the Hall & Hirsch model (scatter- 
ing of a two-beam incident state to an outgoing plane 
wave) to a fully dynamical n-beam model. A Bloch- 
wave model is used to describe the incident and 
scattered fast-electron wavefunctions, ~p(k) and 
@'(k'), based on quantum mechanical theory as 
developed by Yoshioka (1957), Howie (1963) and 
Rez, Humphreys & Whelan (1977) amongst others. 
The appropriate expression that gives the inelastic 
intensity as a function of q has been developed by 
Rossouw & Maslen (1984) for ionization. This is 
conveniently factorized into summations over terms 
that depend separately on ~b and ~b' [k, k'], site of 
interaction [site] and appropriate scattering kin- 
ematics [kin]. Thus 

d I  
d$2 - nt ~ [site][kin] ~ .  [k, k'], (1) 

ghg'h" iji 'j '  

where n is the number of lattice sites per unit volume 
and t the specimen thickness. The indices (g, h) refer 
to diffracted beams in ¢, and the primes on (g', h') 
refer to ~b'. Likewise, primes on the branch indices 
(i,j) indicate the inelastic state. The term [k, k'] is 
given by 

[k, k ' ]=  a i .  a j a r .  aJ 'r~, .rJ  """*C~,X, 
x-x z-x  t - l  z ' x  ~ . . . g  ~ , . ~ h ~ . ~ g ,  

where 

exp [ i( 7 y - 7 i) t] - exp [ i( 7 i ' -  7 j' ) t] 
X - it(~/J - ,y ' -  ~/'+ ,yJ') (2) 

and A i (= C~*) is the amplitude of the Bloch wave 
on branch i of the dispersion surface, and the C's 
and y's are the eigenvectors and eigenvalues of the 
scattering matrix (see Humphreys, 1979, for a review 
of the Bloch-wave scattering model). 

Defining Q ~ = q + h - g ' ,  Q E = q + g - h  ', the [site] 
term is given by 

[site] = • Y. exp [ i (Q1-Q2) .  a',~m], (3) 
tit m 

where 'ram is the position vector of the ruth atom of 
type a in the unit cell. 

Equations (1)-(3) summarize the general result for 
localized inelastic scattering sources within the unit 
cell. This takes into account amplitude summation 
for inelastic scattering from all diffracted beams via 
Q1,2. The [kin] term now needs to be written as a 
function of Q~ and Q2 from the Einstein TDS model. 
As for ionization, it is necessary to consider 'non- 
aligned' terms where Q~ # Q2. The Hall & Hirsch 
result is restricted to a two-beam elastic wavefunction 
scattering to a plane wave, so that the only 'non- 
aligned' terms include q and q - g .  Their expression 
may be rewritten in terms of (1), with a general [kin] 

term 

[kin] = f,~ ( Q1)f*( Q2){exp [ -  Ms (Q1 - Q2) ] 

- e x p  I - M s ( Q , ) -  M~(Q2)]}. (4) 

A brief derivation, based on the Hall & Hirsch model, 
is given in the Appendix. Here f~(Q) is the elastic 
scattering amplitude for an atom of type a and a 
scattering vector Q. The Debye-Waller terms are 

Ms(Q)  1 2 2 =~Q (u,,), (5) 

where (u 2) is the mean-square displacement along 
the vector Q. For QI = Q2, [kin] reduces to the readily 
interpretable factor 

[ k i n ] = f 2 ( Q ) { 1 - e x p [ - 2 M ( Q ) ] }  (6) 

(see James, 1948). With the X-ray scattering ampli- 
tudes of Cromer & Waber (1965) and the Doyle & 
Turner (1968) parameters for scattered electron 
amplitudes, this function is plotted in Fig. 1 for 
titanium. The peak in the Einstein distribution for 
electrons (here at q / 2 7 r = l / A  =0.22/~ -1) is con- 
trasted with a maximum at 1.2/~-1 for X-rays. Here 
a typical room-temperature (u 2) of 0.005• 2 is 
assumed. The maxima for oxygen are displaced out- 
wards (towards larger Q) by about 20%. 

Equation (1) may be thickness averaged by re- 
ducing the branch index summation to one over /j' 
alone, so that only t-independent terms are con- 
sidered. This could be regarded as equivalent to an 
independent Bloch-wave model, which, as shown by 
Cherns, Howie & Jacobs (1973), differs from the 
dependent Bloch-wave description for small t. For t 
greater than the extinction distance, the differences 
become small and this technique of t averaging is 
perhaps more reliable. It also has a computational 
advantage. In general there are NB 8 terms per pixel 
to be considered in the calculation, where NB = 
number of beams included. This reduces to NB 6 when 
thickness averaged. 
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Fig. 1. The TDS intensity for electrons (dashed line) and X-rays 
(solid line) as a function of scattering vector q/27r = 1/A for Ti. 
Here (u 2) is assumed to be 0.005 A. 
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For scattering from a Bloch wave to plane wave, 
and assuming 8-function scattering sources at a-, it 
has been shown by Rossouw & Maslen (1984) that 
(1) reduces to the standard expression for current 
density (apart from the factor nt), i.e. 

J(k, "t)= Y. Ic 121B'(k ', 2 . (7) 
i 

3. Computer simulations 

In the following computations for 100 keV electrons, 
the Bloch-wave matrix was constructed from Doyle- 
Turner parameters (Doyle & Turner, 1968) for the 
atomic scattering amplitudes. These were inserted in 
the tetragonal unit cell for rutile (space group 
P4/mnm), with cation coordinates [000], [½1½] and 
anion coordinates [ uuO], [ ~ 0 ] ,  [ I+ u ½ - u I] and [1 -  
u½+u½]. Here a=4 .5937 ,  c=2.9581 and u =  
0.3053 A. The c-axis projection of the rutile structure 
is given in Fig. 2(a). 

In § 3(a), current density calculations are intro- 
duced for intuitive interpretation of the diffuse scat- 
tering phenomena. § 3(b) presents t-averaged TDS 
calculations from (1) ( N B = 9 ,  symmetrical c-axis 
projection). Comparison with experiment is made in 
§ 4. Eigenvectors and eigenvalues were calculated 
from Eispack subroutines (Smith, Boyle, Dongarra, 
Garbow, lkebe, Klema & Moler, 1976), and images 

) ()  

O 

O 
<> 

) ()  

• 11 

O Q 
O 

O O 
h • 

~a~ (b) 

(c) (d) 
Fig. 2. (a) c-axis projection of the rutile structure, showing cation 

O (O in the plane beneath the paper) and anion <> ( 0  beneath). 
(b)-(d) 45-beam calculations for current density in TiO2, with 
the minimum value subtracted from the distribution for greater 
clarity. The orientations are: (b) [0,0,0] (max.=3.7,  min.= 
0.26); (c) [0.16, 0.16, 0] (max.=4.85, min.=0.19);  (d) [0.28, 
0-28, 0] (max. = 4.46, rain. = 0.21). Orientations (c) and (d) are 
indicated in Fig. 4(b). 

photographed from a TV display screen with 16 grey 
levels. 

( a ) Current density variations 

To understand the angular dependence of the TDS, 
we need to know how the fast-electron current density 
in the unit cell changes as a function of k ' =  k - q .  If 
both ~ and ~/,' have current densities (J and J ' )  with 
maxima on a localized inelastic source at % an excess 
loss signal will be generated in the direction k'. 
However, if J '  has a local minimum on ,r, decoupling 
occurs for the ~, ~ ~,' transition, leading to deficient 
scattering in the direction k'. Figs. 2(b)-(d)  show 
45-beam c-axis projections of the current density in 
the rutile unit cell. Following Cowley (1981), we use 
uvw as coordinate variables in reciprocal space. The 
distribution changes with crystal tilt as indicated, with 
orientation [uvw] defined as the vector from the origin 
[000] to the centre of the Laue circle. As 110 is tilted 
towards the Ewald sphere, maxima increase on one 
pair of oxygen sites, and are displaced onto the other 
pair of oxygen sites with further tilt. Dynamical 
diffuse structure reflects the orientation dependence 
of current density on localized scattering sources and, 
since rapid fluctuations occur on these sites as diffrac- 
ted beams in ~' are brought into the exact Bragg 
orientation, this structure represents an image of the 
Brillouin zone (BZ) boundaries. 

The orientation [u'v'w'] for the inelastically scat- 
tered beam must be referred to the orientation [uvw] 
of the elastic beam on the diffraction pattern. For a 
symmetrical Laue orientation, [uvw]=O, and BZ 
boundaries bisect the diffracting vectors g. This posi- 
tion indicates where the projection of k' along g is 
-~g, so that g in ~' is in the exact Bragg orientation. 
For a point p in the diffraction pattern, [u'v'w']= 
[uvw]-p. Thus the edges of Kikuchi bands in the 
diffraction pattern are located at the BZ boundaries, 
reflecting sharp changes of current density in the unit 
cell. Note that, for quasi-elastic TDS, p -~-q .  

Fig. 3(a) is a 13-beam systematic row calculation, 
with current on Ti and O sites plotted as a function 
of orientation. In Figs. 3 and 4, the current density 
associated with ~ on each site is constant at the 
intercept 0; the current density of ~' on each site is 
directly projected onto the diffraction pattern, and 
varies with orientation [u'v'w']. For instance, ~, ~ t#' 
coupling is related to the real-space overlap of Fig. 
2(b) with Figs. 2(c) or (d) at the scattering sites, 
depending on the orientation of ~b'. In the one- 
dimensional projection of Fig. 3, two of the O sites 
have the same projection symmetry as Ti. The current 
is therefore shown on the remaining two O sites. 
Within the first BZ, current decreases on Ti and 
increases on O, without strong perturbation as the 
second BZ is entered. Relatively abrupt decreases in 
current on both Ti and O occur as the 220 and 
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higher-order beams are swept within the Ewald 
sphere, with a gradual build-up of current on each 
site until the next Bragg reflexion intersects the Ewald 
sphere. 

Fig. 3(b) shows a 13-beam systematic row calcula- 
tion along (100). Current density increases on Ti sites 
as the 200 beam is tilted from its symmetrical orienta- 
tion towards the Ewald sphere, compared with a 
decrease on O sites. However, when the 200 
reciprocal-lattice point passes through the Ewald 
sphere, maxima flip from Ti to O, and within the 
second BZ maxima remain on O sites. Beyond 400, 
a similar build-up and decrease occurs on both Ti 
and O as higher-order beams are tilted through exact 
Bragg orientations. 

The angular dependence of the current density of 
the inelastic beam on the various sites may be plotted 

2. 

X ,', , '  I 

s t / I l 
. . . .  / -  \7--  

1 2 3 

(a) 

1 2 3 
(b) 

as a two-dimensional q variation, directly superim- 
posed on a diffraction pattern. Fig. 4 shows a 45-beam 
calculation, showing the variation on Ti in 4(a) and 
one of the O sites in 4(b). The first-order BZ boun- 
daries are schematically illustrated in Fig. 4(a). 
Several BZ's intersect, and sharp variations occur 
near BZ boundaries. The Ti response varies smoothly 
across 100 (as the 200 BZ boundary is crossed) and 
across the 220 BZ boundary. This contrasts with the 
angular dependence of current density on oxygen, 
where current density within BZ's varies quite 
sharply. Fig. 4(c) shows the summation of current 
density on all O sites, where a sharp drop past 110 
(the 220 BZ boundary) defines a square with {200} 
beams as vertices. 

( b ) An  Einstein TDS computation 

A nine-beam computation for TDS from rutile at 
room temperature is shown in Fig. 5. Isotropic r.m.s. 
displacements were assumed to be 0.067 A for O and 
0.075 A for Ti, as derived from the X-ray data of 
Abrahams & Bernstein (1971). The computed 
response from the Ti and O sites show BZ boundary 
images as for the current density calculations of Fig. 
4. However, since the [kin] term has properties very 
different to a 8-function scattering potential, a radical 
redistribution of intensity between BZ's is evident. 
For Ti, pronounced deficit scattering occurs near the 
centre, and deficit streaks along (110). Deficit lobes 
are directed inwards from {200} beams. For O, there 
is some similarity between Figs. 4 and 5(b), with a 
redistribution of intensity in Fig. 5(b) towards larger 
q. The summed O-site response in Fig. 5(e) shows 
excess lobes directed inwards from the {200} beams 
to the origin, caused by the summation of 5(b) with 
a similar pattern rotated by ~r/2. The 200 BZ boun- 
dary (the square with {110} beams as vertices) is 
evident, with deficit scattering in the centre. Since 
only nine beams are considered, structure outside the 
200 BZ may be meaningless. 

The computed maximum from the two Ti sites is 
about four times greater than the maximum from all 
four O sites. This is primarily due to the peaking of 
current density for the elastic beam on Ti sites when 
the crystal is in the symmetrical orientation, but also 
reflects the ratio f r i / fo  and the somewhat larger r.m.s. 
displacement for Ti compared with oxygen. 

7. Comparison with experiment 

Observations of TDS for the [001] projection of rutile 
Fig. 3. Current density on Ti (solid line) and O (dashed line) sites have been presented by Bursill & Rossouw (1984). 

with different projection symmetry, as a function of crystal New phenomena included intense diffuse scattering 
orientation, 13-beam systematic row computations. The x axis directed inwards from {200} reflexions, a sharply- 
indicates the projection of the fast electron wavevector on the defined square of continuous intensity having {200} 
reciprocal lattice (this is half the vector from the origin to the 
intersection of the reciprocal lattice with the Ewald sphere) beams as vertices, relatively sharp (110) streaking 
measured in units of (a) (110) and (b) (200). along radial and non-radial directions, and a distinct 
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deficit scattering region surrounding the transmitted 
beam (cf. Fig. 6). Both the angular dependence of the 
TDS with respect to crystal tilts and the temperature 
variation of TDS in the range 90< T<420 K were 
also described. 

As shown above, diffuse streaking and areas of 
excess diffuse scattering have their origin in the vari- 

q 

(c) 

Fig. 4. (a) Two-dimensional plot of current density on Ti sites, 
superimposed on a diffraction pattern (max. 3"66, min. 0.46). 
Here and in all other 2D maps, the minimum value is subtracted 
so that the distribution is enhanced. The fine line indicates the 
area enclosed by 110 BZ's and the thick line indicates the 200 BZ 
boundaries. Positions of 100, 110 and 200 beams are indicated. 
(b) Similar plot of current density on O sites with the same 
projection symmetry (max. 5.53, min. 0.34), the direction of 
nearest-neighbour Ti atoms is indicated by the heavy double- 
arrowed marker. The orientations chosen for plots of current 
density in Figs. 2(b)-(d) are indicated. (c) Current density on 
all O sites (max. 3-8, min. 0.45), a summation of (b) with an 
equivalent distribution rotated by ~r/2. 

2 

11o 

(c) 

Fig. 5. (a) Nine-beam map of TDS from Ti sites (max. 0.33, min. 
0.014). (b) TDS from two O sites with the same projection 
symmetry (max. 0-05, min. 0.014). (c) Summation of TDS from 
all O sites (max. 0.071, min. 0.028), with a superimposed diffrac- 
tion pattern. 
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ations in current density within the unit ceil, taking 
into account the site(s) "r and scattering vector q. The 
features brought out most clearly in the calculations 
are visible in the experimental patterns, i.e. streaking 
in (110) directions out of the 000 beam (point scatter- 
ing model equivalent to current density), and diffuse 
maxima, minima and lobes (Einstein model). Theor- 
etical predictions should improve when more Bragg 
beams can be included although, at present, this is 
limited by available computing resources. 

Note that dynamical effects couple to crystal 
orientation, i.e. Kikuchi bands will move across the 
diffraction pattern as the crystal is tilted. Experiment 
confirms that slight misorientations from the c axis 
destroy the symmetry of these diffuse patterns (see 
Fig. 3 of Bursill & Rossouw, 1984). Streaking due to 
phonon modes is not in this sense a dynamical 
phenomenon, since these will not be displaced on the 
diffraction pattern with crystal tilt. 

The c-axis diffraction pattern from TiO2 in Fig. 6 
(Bursill & Rossouw, 1984) show diffuse streaks in 
(110) directions from the (000) beam, and an intense 
diffuse square connecting the {200} beams. This 
square seems most closely related to the current 
density variations on O sites (Fig. 5c), and streaking 
in (110) directions is supported in both Figs. 4(c) and 
5(c). Broad lobes pointing inwards from the {200} 
beams are also simulated in the TDS from O sites in 
Fig. 5(c). If the total computed TDS from O plus Ti 
is displayed, the distribution is not much different 
from Fig. 5(a), and correlation with experiment is 
disappointing. However, correlation between experi- 

ment and the expected response from O sites may be 
significant. 

Why oxygen sites should apparently contribute far 
more strongly to diffuse scattering than Ti sites is not 
well understood. A possible explanation is that the 
Ti atoms vibrate effectively 'in phase' rather than 'at 
random' as assumed in the Einstein model, at least 
for lateral extents of about the same dimensions as 
the lateral coherence length of the scattered electrons. 
Thus the Ti sublattice would appear effectively square 
(and stationary) with respect to fast electrons. It has 
been reported that, for TiO2, the (incipient) ferroelec- 
tric mode A2u accounts for 20% of the vibrational 
energy at 300 K (Samara & Peercy, 1973). The atomic 
displacements for this mode lie strictly parallel to 
[001] (the projection axis used in the present study, 
see Fig. 14, Bursill, 1978/79). Clearly, to proceed 
further in the analysis of TDS from rutile-type struc- 
tures, more elaborate and realistic modelling of the 
vibrational modes must now be contemplated. 

8. Conclusion 

The theory presented in this paper extends the two- 
beam theory of Hall & Hirsch (1965), and provides 
an Einstein model for TDS that is valid for all scatter- 
ing angles. Theories involving phonon scattering 
(Rez, Humphreys & Whelan, 1977; Earney, 1971) are 
usually approximated to first order, so that the theory 
breaks down at large angles where multiple phonon 
processes contribute to TDS. 

New diffuse scattering phenomena in rutile struc- 
tures have at least been partially explained in terms 
of point scattering and an Einstein TDS model. 
Simple arguments based on current densities associ- 
ated with elastic and inelastic wavefunctions, and 
how these affect coupling between these states, may 
also provide an intuitive understanding of dynamical 
diffuse scattering phenomena. At this stage more 
detailed scattering models suffer from limited resolu- 
tion because of severe computational restrictions on 
the number of beams. 

Nevertheless, it is already clear that the present 
theoretical calculations have provided a significant 
first step towards the quantitative analysis of TDS for 
electrons. This theory may be extended to cover X-ray 
or neutron scattering. Further experimental studies, 
in particular measurement of the temperature 
dependence of the diffuse scattering from TiO2, 
MgF2 and other isostructural compounds, are in 
progress. 

Fig. 6. Experimental c-axis diffraction pattern from TiO2. Here 
some intensity from forbidd~ll {100} diffracted beams occurs. 
Similarities are evident between this and features in the oxygen- 
site scattering simulations in Figs. 4(c) and 5(c). 

We are grateful to Russel Creek, Peter Goodman, 
Sylvia Mair, Peter Self and Alan Spargo for stimulat- 
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with the computations. We acknowledge the financial 
support of a CSIRO/University of Melbourne 
research grant. 
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A P P E N D I X  

We follow Hall & Hirsch (1965), but extend their 
treatment by writing both elastic and inelastic 
wavefunctions as Bloch waves, i.e. 

~b=~,AJE CJh exp{i(kJ+h).r}  
j h 

and (A1) 

~b'= E AvE C~, exp { i (k" -  g ') .  r}. 
i' g '  

The crystal atoms a, 13 vibrate as Einstein oscillators, 
with instantaneous positions 

I r~ = r~ + u~ (A2) 

with u,, the thermal displacement from equilibrium 
r~. The scattered amplitude Y, including both Bragg 
and TDS contributions, is thus 

Y =  Y. ~b'*(r')f,~ (Qt) ~b(r'), (33) 
ot 

where f is the atomic scattering amplitude, and Q~ = 
q + h - g '  connects discrete beams in ~b and ~' to a 
position q in reciprocal space. Writing the total 
intensity/7- as YY*, and substituting (A1) into (A3), 
we have 

I r  = S U M  E f~(Q1)f~(Q2) 

xexp{ iQ, . r ' }exp{- iQ2.r '~} .  (A4) 

Here Q2 = q + g - h' and 

S U M =  Y~ Ai*A)Ai'*AJ'Cg*CJhC~,*C{, 
index 

with the sum over index including branch indices 
i, j, i', j '  and beams g, h, g', h'. 

We split the sum over atoms a,/3 in (A4) into a 
sum over a =/3 and a #/3. Thus 

7"1 = ~'. f~(Q1)f*(Q2) exp { i ( Q l -  Q2). r '}  
ot 

T2 = Y. f~(Q1)f~(Q2)exp{i (Qt .r ' -Q2.r '~)} .  
a # / 3  

Using (A2) and the relationship ( exp{ iQ .u} )=  
exp{-½((Q.u)2)}, the thermal average of the first 
term is 

T1 = • L ( Q,)f*( Q2) exp { i(Q, - Q2). r~} 
o¢ 

x exp { - M ( Q ~ -  Q2)}. (A5) 

Likewise, the thermal average of the second term is 

T2 = ~ f ,~(Q1)f~(Q2)exp{i(Ql.r , , -Q2.r~)} 
t~#/3 

Xexp { - [ M ( Q t )  + M(Q2)]}. (A6) 

The total intensity is then 

Ir = In+ ITDS = SUM [T1 + 7"2]. (A7) 

The Bragg contribution is obtained by writing the 
intensity from a,/3 at equilibrium positions, but with 
f (Q)  modulated by the Debye-Waller factor 
exp { -M(Q)} .  Using similar arguments to those in 
obtaining (A7), we find 

In = SUM [WI + W2], (AS) 

where 

W1 = ~ f~( Qt)f*( Q2) exp { i ( Q , - Q 2 ) .  r,~} 

xexp { - [ M ( Q , ) +  M(Q2)]} 

and W2 = 7"2. Thus 

ITDS= I T - I s = S U M [ T , -  W,], (A9) 

where the sum over products a #/3 cancel out, leaving 
only self-correlated terms in (A9). The term in square 
brackets in (39),  i.e. 

Y. f~( Q1)f*(Q2) exp { i (Q1-  Q2). r~} 

x (exp [ - M ( Q I -  Q2)] 

-exp{-[M(Q1)+M(Q2)]})  (A10) 

is equivalent to the combined term [site] [kin] in (3) 
and (4), summed over all atoms a. Thus we have the 
[kin] term as a function of 'non-aligned' terms in Q~ 
and Q2. The above treatment is readily extended to 
include crystals with m atoms of type a per unit cell. 
A more convenient expression, which requires a sum 
over atoms in the unit cell, is written 

/TDS = nt Y. [site][kin][k, k'], (311) 
index 

where, from (A10), 

[site]= ~ exp{i(Q~-Q2).,r , ,m} (312) 
t~ tll'l 

[kin]= f~( Q~)f*( Q2) 

× (exp { - M ( Q 1 -  Q2)} 

- e x p  {- [M(Q~)+M(Q2)]})  (313) 

and [k, k'] as in (4). It is also possible to derive (A13) 
by inspection of the cross term in q and q - g  in 
cquation (10) of Hall & Hirsch (1965). 
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Abstract 

Structure refinement may be considered as a minimiz- 
ation of a function R(X) of a large number ofrefineable 
parameters. A new type of function incorporating 
phase probability distribution is proposed. The 
minimization of the function utilizing gradient 
methods requires the computation of gradient V R, as 
well as the product of the gradient and the matrix of 
second derivatives with some direction. The algorithm 
of Kim, Nesterov & Cherkassky [Dokl. Akad. Nauk 
SSSR (1984), 275, 1306-1309] adapted to macro- 
molecular structure refinement takes about four 
times longer for the computation of these values 
compared to the computation of the value of the 
minimized function. The matrix of second derivatives 
is used without any approximation. 

Introduction 

The refinement of a structure implies that there is a 
model with parameters to be changed until they most 
closely fit X-ray scattering data, stereochemical 
restraints, energy minimum conditions etc. The 
refinement proper should be distinguished from the 
elaboration of its instrumental part, that is computer 
programs. And if for the former the most important 
are the researcher's experience and intuition, the 
latter puts more emphasis on the 'computer' problems 
such as efficiency of the algorithms, user's con- 
venience etc. Different approaches to refinement of 
macromolecular structures have computational 
similarities, so that it becomes possible to solve most 
general problems of developing the corresponding 
programs. 
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The large number of refineable parameters is an 
essential feature of macromolecular structure refine- 
ment. This involves considerable computational 
difficulties, therefore routinely applicable algorithms 
need computation increasing linearly with the size of 
the refineable object. The Cooley-Tukey (1965) 
algorithm based on the fast Fourier transform and 
the fast differentiation algorithm developed by Kim, 
Nesterov & Cherkassky (1984) allow a general 
algorithm for model refinement whose computation 
per cycle increases almost linearly with the size of 
molecule. In § 2 we consider the algorithm construc- 
ted by Kim et al., in which the n components of the 
gradient of a function f ( x l , . . . ,  xn) require much the 
same computation as the single function. Note that 
an algorithm of this type for some particular criterion 
used in refinement of atomic models was earlier pro- 
posed by Agarwal (1978) and later improved by 
Lifshitz (Agarwal, 1981). In § 3 we show how to 
develop similar algorithms for every criterion and 
refineable parameter. It should be emphasized that 
these rapid algorithms compute the accurate product 
of a full second-derivative matrix and a direction 
without any approximation. Application of the 
routine based on these algorithms will be considered 
elsewhere. 

1. Problem of the atomic model refinement 

1.1. Atomic models 

In this paper we consider only the models where 
the distribution of electron density can be a sum of 
the contributions of individual atoms 

p ( r ) =  ~ pj(r, cb). (1) 
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